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Cellular motility underlies critical physiological processes including embryogenesis, metastasis and
wound healing. Nerve cells undergo cellular migration during development and also extend neuronal
processes for long distances through a complex microenvironment to appropriately wire the nervous sys-
tem. The growth cone is a highly dynamic structure that responds to extracellular cues by extending and
retracting filopodia and lamellipodia to explore the microenvironment and to dictate the path and speed
of process extension. Neuronal responses to a myriad of guidance cues have been studied biochemically,
however, these approaches fail to capture critical spatio-temporal elements of growth cone dynamics.
Live imaging of growth cones in culture has emerged as a powerful tool to study growth cone responses
to guidance cues but the dynamic nature of the growth cone requires careful quantitative analysis. Space
time kymographs have been developed as a tool to quantify lamellipodia dynamics in a semi-automated
fashion but no such tools exist to analyze filopodial dynamics. In this work we present an algorithm to
quantify filopodial dynamics from cultured neurons imaged by time-lapse fluorescence microscopy. The
method is based on locating the end tips of filopodia and tracking their locations as if they were free-
moving particles. The algorithm is a useful tool and should be broadly applicable to filopodial tracking
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from multiple cell types.
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1. Introduction

Appropriate neuronal extension and guidance is critical to attain
reliable wiring of the nervous system during development. A myr-
iad of guidance cues including netrins, semaphorins, slits and
ephrins bind to specific receptors on the growth cone surface and
initiate signals to remodel the growth cone cytoskeleton (Huber et
al., 2003; Luo, 2002). How the growth cone interprets multiple cues
in time and space to regulate directional motility has only been par-
tially elucidated. This motility is ultimately regulated by a complex
interplay of polymerization and disassembly of the actin and micro-
tubule cytoskeleton and the extension of the plasma membrane via
vesicle fusion (Bray and Hollenbeck, 1988). Actin filaments underlie
lamellipodia and filopodia in the highly dynamic peripheral region
of the growth cone and the organization of actin filaments is differ-
ent in these two structures (Bray and Chapman, 1985). While actin
filaments within filopodia are bundled and linear, filaments form
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a meshwork within the lamellipodial veil (Kalil and Dent, 2005;
Mongiu et al., 2007). It has long been appreciated that filopodia
and lamellipodia subserve distinct functions highlighting the need
to study the dynamics of these structures independently (Albrecht-
Buehler, 1976).

Careful quantification of growth cone dynamics is a requirement
for the development of a statistically relevant understanding of fine
aspects of neuronal motility. The tools to quantify this motility from
time-lapse images of dynamic growth cones are in constant devel-
opment, but a method to precisely assess filopodial dynamics is
still lacking and must be performed manually. Systematic studies
of lamellipodial behavior has been achieved by using kymograph
analysis (Mongiu et al., 2007) and in studies examining growth
cones guided by laser light (Betz et al.,, 2007). Neurite-tracing
algorithms varying in complexity and accessibility have also been
developed over many years (Capowski, 1989) to trace long exten-
sions such as axons and dendrites. Most available procedures need
human interaction, but significant progress in levels of accuracy
and automation has been achieved (Al-Kofahi et al., 2002; He et
al.,, 2003; Meijering et al., 2004; Zhang et al., 2007). Comparatively,
examination of filopodial dynamics has relied on manual tracking
of individual filopodia; a prohibitively time-consuming approach
for large-scale analysis. Some recent studies include quantitative


http://www.sciencedirect.com/science/journal/01650270
mailto:santiago.costantino@umontreal.ca
dx.doi.org/10.1016/j.jneumeth.2008.02.009

166 S. Costantino et al. / Journal of Neuroscience Methods 171 (2008) 165-173

analysis of motility and neurite extension rates (Endo et al., 2003,
2007) but these studies consider the movement of the growth cone
as a whole and changes in filopodial extension are considered over
long-time scales by manual analysis.

Here we describe a semi-automated method to measure filopo-
dia length and extension and retraction rates from time-lapse
images of fluorescently labeled growth cones. We combine simple
tracing algorithms and standard single particle-tracking techniques
to achieve the first method to accurately quantify filopodial dynam-
ics to the best of our knowledge. We describe the fundamental steps
of the algorithm based on skeletonization of isolated growth cones
to find the position of their filopodial tips followed by tracking of
the tips as individual single particles. The full procedure can be
implemented by combining publicly available plug-ins and func-
tions, thus the method will be readily available for general use. An
implementation programmed in Matlab (MathWorks Inc., Natick,
MA)is made available and procedures forimplementation in Image]
(http://rsb.info.nih.gov/ij/index.html) are also outlined. The results
obtained on time-lapse fluorescence images of chick dorsal root
ganglia (DRG) growth cones are compared with manual tracings
yielding no significant difference from a statistical point of view,
while shortening the analysis time by several orders of magnitude.

2. Methods

To semi-automate quantification of filopodial dynamics, indi-
vidual filopodia from fluorescent time-lapse images of growth
cones are selected and skeletonized. The skeleton is the minimum
amount of information needed to process a pattern and is obtained
by sequentially thinning the objects in an image. This thin-line rep-
resentation of a pattern is more amenable to extraction of critical
features such as end points, junction points and connections among
components. As expected, for a thinning algorithm to be effective
it should preserve significant features of the pattern and eliminate
local noise without introducing distortions of its own (Lam et al.,
1992). From skeletons, filopodial end points are detected and traced
relative to a start point. Coordinates of individual filopodial tips are
tracked as individual free particles through an image sequence from
a time-lapse movie and rates and lengths of filopodial extensions
and retractions can then be derived. The methods for processing
the images and deriving this information are described below.

The first step to achieve a reliable thin-line representation of flu-
orescent growth cone images is to obtain a good transformation of
grayscale images to binary images. This can be performed by apply-
ing intensity thresholds (Section 2.1) or alternatively, by detecting
object boundaries (Section 2.2). In the first case a threshold value
is set, so that all pixels with intensities above this threshold are
converted to 1 and dimmer pixels are set to 0. Alternatively, the
derivative of the intensity can be analyzed to detect the edges of
the objects in the image and set the pixels inside the objects to 1
and the pixels outside to 0.

2.1. Intensity-based binarization

2.1.1. Background estimation

To improve the homogeneity of the image illumination and
subtract smooth continuous background, morphological opera-
tions are performed. These morphological operations can always
be mathematically described as combinations of dilations and ero-
sions. Dilation adds pixels to the boundaries of objects in an image,
while erosion removes pixels on object boundaries. The number of
pixels added or removed from the objects in an image depends on
the size and shape of the structuring element used to process the
image. After dilation, the value of a pixel is the maximum value of
all the pixels in its neighborhood. In a binary image, if any of the

pixels is set to the value 1, the output pixel is set to 1. After erosion,
the value of a pixel is the minimum value of all the pixels in its
neighborhood. In a binary image, if any of the pixels is set to 0, the
output pixel is set to 0 (Gonzalez et al., 2004).

The effect of an opening operator is to preserve foreground
regions that have a similar shape to the structuring element, or that
can completely contain the structuring element, while eliminating
all other regions of foreground pixels. This procedure usually helps
when the illumination is not even throughout the field of view,
or when the background in bright areas is more intense than the
fluorescence in the dim regions. The opening operator specifically
consists of an erosion followed by a dilation using the same struc-
turing element (Haralick and Shapiro, 1992). A disk larger than the
objects that need to be analyzed is used as a structuring element
and imopen and strel Matlab functions are utilized and the final size
can be adjusted depending on the size of the image and the growth
cones; the same functions are available in Image] using Subtract
Background with a rolling ball algorithm (Sternberg, 1983).

2.1.2. Intensity threshold

A manually chosen factor of the mean image intensity is set as
a threshold. Typically, for the time-lapse fluorescence imaging of
our test sets, values above the mean are appropriate to achieve
binary images that reliably represent the shape of the growth
cones. This is due to the high-signal-to-noise ratio of fluorescence
intensity obtained in our neuronal cultures, but for weaker sig-
nals a more sophisticated way to establish this threshold value
may be required. Manual inspection of several thresholded indi-
vidual single frames throughout the movie avoids artifacts caused
by illumination changes and focus corrections. The intensity value
calculated using Otsu’s method (Otsu, 1979) is used as a default to
begin before such inspection.

2.1.3. Growth cone selection

To discard pixels with intensities above the set threshold that do
not belong to the growth cone, an eight-connected neighborhood
matrix is established to define individual objects. This assigns all
pixels touching vertically, horizontally or diagonally to the same
object. The surface of all of the objects present in the image is cal-
culated and only the largest object is conserved. In most cases this
procedure is sufficient to discard both noise and debris from the
primary culture from the analysis. The functions regionprops and
Analyze Particles can be used to achieve this in Matlab and Image],
respectively.

2.14. Boundary smoothing

Optimal skeletonization of the growth cone is achieved by sim-
plifying the ramifications protruding from the growth cone. This
diminishes false positive filopodia generated from small growth
cone protrusions. Growth cone simplification is performed through
a sequence of morphological operations to smoothen the edges. In
some cases smoothing the growth cone may result in the loss of
some small real features present in the image; however, tracking of
every end point is not necessary to obtain significant data.

First a closing operation with a custom disk is applied to the
images and then a dilation of an arbitrary number of pixels is per-
formed. The adjustment of the dilation magnitude is performed to
avoid the fusion of individual filopodia. In our samples two pixels
were typically used. Operations can be easily performed in both
Matlab (imclose and imdilate) and Image] (dilate and close in the
Binary menu).

2.2. Edge detection-based binarization

Analgorithm based on the derivative of the intensity can be used
to detect the edges of the growth cones. Different implementations
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of this type of procedure are available with distinct sensitivity to
noise, particularly when the image contrast is low.

2.2.1. Boundary estimation

The zerocross edge detection function implemented in Matlab
yields the most accurate results in order to perform the skeletoniza-
tion on our growth cone image sets. The zero-crossing detector
filters the image with the Laplacian of a two-dimensional Gaussian
of a custom radius and searches for the places in an image where it
changes sign. Such points often occur at “edges” in images, points
where the intensity of the image changes rapidly, but they also
might occur at places that are not as easy to associate with edges. To
remove these unwanted events, a threshold for the strength of this
derivative value can be manually set. Based on the results obtained
on our image sets, the high sensitivity to noise of Sobel filters to find
the edges was the reason to choose the Laplacian of a Gaussian as
the default method. In order to process the computation we used a
lower-order method with[111; 1, -4, 1; 11 1] filter. Similar results
can be obtained with Image] Find Edges function.

2.2.2. Growth cone delineation

The pixels obtained as boundaries are usually not all connected.
Different features visible in the original images yield individually
connected pixels generating multiple objects. A fraction of such
individual objects belong to the growth cone and some others are
related to culture debris or noise.

In order to connect the distinct objects, a series of morpholog-
ical operations are performed. A closing operation with a custom
size disc followed by a dilation of an arbitrary number of pixels
accomplishes the object unification and smoothens the boundaries
at the same time. Subsequently, the biggest object in the image is
selected and the remainders are discarded before performing the
skeletonization: Matlab (imclose and imdilate) and Image] (dilate
and close in the Binary menu).

2.3. Skeletonization

Both of the aforementioned procedures (intensity- and edge
detection-based binarizations) render a one-object binary image
for skeletonization. To obtain a skeleton, iterative algorithms that
delete successive layers of pixels on the boundary of the pattern
are applied until only a skeleton remains. The deletion or reten-
tion of a pixel p would depend on the configuration of pixels in
the local neighborhood containing p. We have chosen an algorithm
that provides the simplest structures combined with fast computa-
tion time and is the second alternative proposed in an article by Guo
and Hall, which is implemented in Matlab by the function bwmorph
with option thin (Guo and Hall, 1989; Lam et al., 1992).

The algorithm is fully parallel, very fast and, more importantly, it
preserves the connectivity properties of the image. The skeletoniza-
tion method included in Image] is an alternative, but this algorithm
usually yields overly intricate objects with multiple ramifications.

2.4. Identification and localization of ends and intersections

The skeleton obtained for each frame of the time series is
scanned in order to find ends and joints. To locate the ends, the
pixels with only one neighbor are selected. Similarly, to locate
intersections three- or four-neighbor pixels are found. Our imple-
mentation uses find_skel_ends and find_skel_intersection available in
Matlab Central (http://www.mathworks.com/matlabcentral/).

2.5. Filopodial tips tracking

To measure the filopodia length as a function of time, the ends
found in the skeletonization are tracked as if they were individ-

ual free particles. In principle, considering these locations as freely
moving entities adds degrees of freedom that the system does not
have and including constraints to the tracking algorithm should
improve the accuracy of the results. Nevertheless, single particle-
tracking methods are widely available, tested and implemented
in several different languages. We used Blair and Dufresne’s code
(http://www.seas.harvard.edu/projects/weitzlab/matlab/).

The following parameters are manually set before performing
particle tracking to optimize the results: the minimal duration
of a trajectory to be considered in the analysis, the maximal dis-
placement per frame, and the number of frames that a particle (a
filopodial end) can be lost along the trajectory.

2.6. Filopodia length estimation methods

The two main goals of this method are to achieve an accurate
measurement of filopodia length as a function of time and to cal-
culate the rates of filopodial extension and retraction. The exact
lengths of filopodia are dependent on the definition of the origin
and the tracing method. The definition of the filopodial initiation
site is not trivial because of the dynamic nature of the growth
cone periphery from which it initiates. Nevertheless, the rates of
filopodial extension and retraction are less sensitive to their pre-
cise initiation point and the tracing procedures. Three alternative
definitions of filopodial lengths and initiation sites are tested and
compared in this article: manually selected origins, centroid deter-
mination and distance along the skeleton.

2.6.1. Manually selected origins

A visual inspection of several frames in the movie, allows the
user to set arbitrary locations for the origin of the tracked filopodia.
The distance from these locations to the ends are a good mea-
surement of the real filopodial length. Since the filopodia ends are
numbered in the output movies of our implementation, the user is
able to specifically select the extensions to be processed.

2.6.2. Centroid determination

The simplest way to compute rates of filopodial extension and
retraction is to define the distance between the image intensity
centroid and each filopodial tip. Using this paradigm the abso-
lute length of each filopodia is overestimated because the initiation
point is within the central domain of the growth cone rather than at
the growth cone periphery. However, in terms of assessing rates of
extension and retraction, there is no significant difference to setting
their origin locations based on the morphology of the filopodia.

The growth cone intensity centroid is calculated for each frame
using the binary mask created before the skeletonization. Thus, only
the intensity of the pixels used to calculate the skeleton is consid-
ered in the computation of the centroid location and no external
object can bias the result. The formula used to establish the centroid
coordinates is:

Zskeleton i

Zskeletonlivj

where 7 is the position in i and j pixel coordinates, I;; is the pixel
intensity and the sum is calculated over all the pixels that belong
to the growth cone mask.

This approach is advantageous because of its automatic nature
and because an overall displacement of the growth cone will be
reflected in the position of the centroid. The manually selected ori-
gins approach assumes that the movement of the whole growth
cone is negligible compared with the changes in the filopodia
lengths. In most of the cases we analyzed, this effect did not influ-
ence the results, but this could introduce an artifact in long-term
studies.

)=
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2.6.3. Distance along the skeleton

A more sophisticated and desirable measure of the filopodial
length is to follow the skeleton from the end to an arbitrary, user-
defined origin location. This option considers the curvature of the
filopodial projections when measuring their length. This option is
more complicated to implement as an imaging processing software
macro and it is computationally more time consuming. Given the
very complex ramifications that skeletonizations can yield, graph
theory (Wilson, 1996) is used to calculate the path length from the
end to the origin of filopodia. All of the pixels in the skeleton are
considered vertexes of a graph and their connectivity is established
by calculating the distance between all possible pixel pairs. The
result is a connectivity matrix C where the C;; elements are 1 if
pixels i and j of the skeleton are connected and O if they are not.

Arbitrary locations are set as approximate filopodial origins and
in each image the closest pixels in the skeleton to these locations
are found. Next, to choose the path from a filopodial tip to the ori-
gin pixel in the skeleton, the shortest path is calculated using the
Floyd-Warshall algorithm. This algorithm calculates the shortest
path in a weighted, directed graph in a single execution between all
pairs of vertices (Floyd, 1962; Warshall, 1962), considering the dis-
tances between two connected pixels as weights. We have used an
implementation available in the Graph Theory Toolbox from Matlab
Central for this application.

3. Culture and imaging

Fluorescence intensity-based imaging of live growth cones was
achieved by culturing dorsal root ganglion explants as previously
described (Hsieh et al., 2006). Briefly, explants are dissected from
E13 chicks and cultured in growth media (F-12 supplemented with
10% Fetal Bovine Serum and 50ng/pl of 7S nerve growth fac-
tor) on glass-bottomed culture dishes (MatTek Co., Ashland, MA)
coated with poly-L-lysine and 20 pg/ml laminin. Recombinant her-
pes simplex virus (HSV) expressing red fluorescent protein (RFP)
was generated using 5d[1.2 helper virus and the 2-2 cell line as pre-
viously reported (Hsieh et al., 2006). Explants were infected at the
time of plating and growth cones positive for red fluorescence were
imaged approximately 20 h after time of infection.

Standard epifluorescence microscopy was performed using a
100x 1.3 NA objective and immersion oil on an Axiovert 200M
inverted fluorescence microscope (Carl Zeiss Canada, Toronto, ON).
500 ms exposure 8-bit grayscale images were obtained with North-
ern Eclipse software (Empix Imaging, Mississauga, ON) and a Retiga
EXi CCD camera (QImaging, Burnaby, BC) every 2.375s. Imag-
ing was performed using a climate-controlled stage and chamber
which maintained temperature at 37 °C and atmospheric CO, at 5%.
Images were captured without further pre-processing. Comparison
of DICimages and fluorescent images revealed that the fluorescence
signal reliably detects filopodial lengths and does not expose aber-
rant pixels from non-focal plane glare (data not shown). Adaptation
of this method for cultures that may be labeled with less robust flu-
orophores or markers may require further image pre-processing or
acquisition with a confocal microscope.

4. Results and discussion

Examples of the sequential operations to locate the filopodial
ends using intensity threshold- (Section 2.1) or edge detection-
(Section 2.2) based proposed methodologies to obtain binary
images are presented in Figs. 1 and 2, respectively. The origi-
nal fluorescence images of a representative E13 chick dorsal root
ganglion growth cone (Fig. 1A) were subjected to background cor-
rection operations and then thresholded by a factor of the mean
pixel intensity. This value was selected after visually inspecting the

binary images resulting from a number of frames (approximately 10
frames per image sequence) and adjusting the intensity threshold
to correspond to the one yielding the most accurate representation
of the growth cone. Thresholding yielded binary images contain-
ing several objects composed of connected pixels (Fig. 1B) and by
including only the largest of these objects in subsequent analysis
one is left with a binary image which accurately corresponds with
the shape of the original growth cone and excludes pixels resulting
from culture debris or background fluorescence (Fig. 1C). Alterna-
tively, fluorescent images of the same growth cone (Fig. 2A) were
subjected to an edge detection function which defines the contours
of the growth cone as well as areas of pixel intensity resulting from
culture debris. The resulting image (Fig. 2B) shows the effectiveness
of such a function which yields well-defined but somewhat dis-
connected contours. To more accurately characterize the pattern of
filopodia and the shape of the growth cone, a closing operation was
performed with a user-defined disk size which connects contours
into larger objects and results in a more precise representation of
the growth cone shape (Fig. 2C) reconnecting filopodia that other-
wise would be lost when the largest object is selected (Fig. 2D). The
complexity of growth cone morphologies, even in binary images,
presents a significant challenge to generating reliable and accu-
rate skeletons. Binary images from both algorithms were dilated
by a user-defined number of pixels which smoothened edge effects
(Fig. 1D and E). This resulted in reduced complexity while main-
taining the representation of gross morphology and allowing for
identification of the endpoints of relevant filopodia. Overall, skele-
tonization using either algorithms (Figs. 1F and 2F) yields reliable
and accurate localizations of the filopodia tips. The most appropri-
ate method can be chosen based on a visual inspection of a number
of frames in the movie to analyze. The result will typically depend
on the signal-to-background ratio of the fluorescence images and
their contrast.

Skeletons obtained using the edge-based algorithm (Fig. 2) are
generally more accurate for localization of filopodial tips. Never-
theless, in some cases, gaps in the delineation of long protrusions
may cause the loss of filopodia for the analysis or yield artifacts like
very fast retraction velocities due to an underestimation of their
length in isolated frames. Increasing the size of the structuring disc
of the closing operation or the number of dilation pixels can fix
the gap, but sometimes at the cost of losing accuracy tracing other
filopodia or adding debris in the culture to the growth cone pixels.
Conversely, the intensity threshold method provides representa-
tive skeletons when the image contrast is high (Fig. 1). However,
when lamellipodia are too bright compared to filopodia there can
be a tradeoff between loosing short protrusions and capturing long
and dimmer filopodia.

The example analyzed in Figs. 1 and 2 shows that both meth-
ods can precisely locate the filopodial tips, nevertheless the final
structure of the growth cone skeleton may differ. Thus, different
full length values of the filopodia can be obtained when estimating
them using the traces yielded by the skeletons, but the dynamics
are less affected by this, as can be seen in Table 1.

In the case of low signal to background images, preprocess-
ing in the spatial or in the frequency domain may be required to
obtain accurate quantification of the growth cone dynamics using
this method. In addition to the routine to improve the illumination
homogeneity that has already been described, a number of opera-
tions on the image intensity histograms can be performed before
the analysis. As an example, several approaches can be followed
to obtain a reliable skeletonization by enhancing the image con-
trast. The simplest possibility is to remap the image histogram so
that a low percentage of the pixels will be saturated at low and
high intensities. Alternatively, the grayscale image histogram can
be remapped to an arbitrary shape by histogram equalization. This
is a technique that aims to modify the dynamic range of the image
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Fig. 1. The sequence of the skeletonization algorithm based on an intensity threshold. (A) The original epifluorescence image. (B) The binary image after applying an intensity
threshold. (C) The object is dilated a custom number of pixels to simplify the skeleton and a closing morphological operation is performed with a disk to smoothen the edges.
(D) The skeleton obtained is superimposed over the image. The skeleton ends and intersections are labeled with blue and pink circles, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of the article.)

intensity, in the sense that more frequent pixels should be enti- image in the so-called contrast-limited adaptive histogram equal-
tled to a larger range and gain contrast. While this method will ization algorithms (CLAHE). CLAHE operates on small regions in the
typically enhance some regions of the image, it will also result image, called tiles, rather than the entire image. Each tile’s contrast
in overexposures of several other areas of the image. Finally, this is enhanced, so that the histogram of the output region approx-
method is usually applied to spatially independent regions of the imately matches a specified histogram. The neighboring tiles are

Fig. 2. The sequence of the skeletonization algorithm based on the detection of the edges. (A) The image before image processing. (B) A zerocross edge detection operation
is performed in order to reveal the contour of the growth cone. (C) A closing operation is done to join filopodia that may be disconnected to the big object. (D) The biggest
object of the image is selected given an eight-connectivity matrix. (E) A dilation of a custom number of pixels aids to simplify the skeletonization, by reducing the branching
complexity. (F) The skeleton obtained is superimposed over the fluorescence image. The skeleton ends and intersections are labeled with blue and pink circles, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Table 1

Comparison of the results obtained using intensity- or edge-based methods to manual tracing

Intensity-based Edge-based

Arbitrary Centroid Follow Arbitrary Centroid Follow
Length 0.8 £0.2(0.9+0.1) 09 +0.2(0.94+0.1) 1.7 £ 1.4(1.0+0.1) 0.8 +£0.1(0.9+0.1) 0.8 +£0.1(0.9+0.1) 16 + 1.2(1.1+£0.1)
Velocity 0.8 £0.2(0.9+0.1) 0.8 £0.2(0.94+0.1) 23 +£23(1.0+0.1) 09 +0.1(0.9+0.1) 0.9 + 0.1 (0.8+0.1) 29+ 17(1.0£0.1)

then combined using bilinear interpolation to eliminate artificially
induced boundaries (Gonzalez et al., 2004).

In the case of light-guided growth cones (Betz et al., 2003;
Ehrlicher et al., 2002), a bright laser spot can appear in the fluores-
cence channels and saturate the image or portions of the filopodia
to be tracked. A similar artifact can also be produced by culture
debris masking a fraction of the growth cone. In both cases, the
delineation of the growth cone will not be adequate, however the
dynamics obtained after tracking the filopodia that are clearly vis-
ible and not masked will not be affected by an overall misleading
delineation.

Tracking algorithms are often utilized to trace the trajectories of
single molecules and colloids (Murray and Grier, 1996; Saxton and
Jacobson, 1997), but our results demonstrate that they are perfectly
applicable for other types of movements. The basis of single particle
tracking is to match the positions of particles in subsequent frames
by minimizing the overall movement of all the particles tracked in
an image (Crocker and Grier, 1996; Sage et al., 2005; Sbalzarini and
Koumoutsakos, 2005). When the number of particles to track is very
large, more sophisticated algorithms have to be implemented, as in
Fluorescence Speckle Microscopy (Ponti et al., 2004; Vallotton et al.,
2004) and simple routines are not applicable. Most of the simple
methods not only track the particle positions, but also include rou-
tinesin order to locate them, based on their brightness and shape. In
our case, finding the positions to be tracked is achieved by scanning
the skeletons and not analyzing the images as these methods do.

To do this, several different freely available Image] plug-ins exist,
as well as routines in Matlab, LabVIEW and IDL, which makes them
easy to apply.

Filopodia bifurcation, movements out of the focal plane or exces-
sively rapid displacements may cause the tracking algorithm to
separate two trajectories that belong to what appears to be one.
Likewise, crossovers of two filopodia can render mislabeled trajec-
tories. While the contribution of such artifacts to the final statistical
analysis may be negligible if a large number of filopodia are tracked,
deletion of incorrect tracks by manual visual inspection will provide
the most reliable analysis. In order to aid this analysis, the algo-
rithm implementation we provide imprints a number identifying
each filopodium so that tracking data can be manually corrected
(Fig. 3).

To establish the accuracy of our method, fluorescently labeled
growth cone filopodia (Fig. 3A) were manually traced using Neu-
ron] (Meijering et al., 2004) in individual frames (purple lines in
Fig. 3B). Similar analysis was performed for each frame from the
time-lapse movie and individual filopodia were matched in each
frame by visual inspection. For comparison, all filopodial endpoints
were determined automatically using the edge detection-based
skeletonization method and endpoints were tracked using the soft-
ware (see Section 2.5). All of the endpoints were traced throughout
the movie and the final traces from 180 frames are overlaid on the
growth cone from the starting frame (Fig. 3C). Filopodial length
measurements for each frame were then made using three different

Fig. 3. Depiction of different ways of measuring filopodial dynamics. (A) One frame of the original time-lapse fluorescence images obtained. (B) Selected filopodia were
manually traced using Neuron] (Meijering et al., 2004). This semi-automatic process needs to be repeated for all single frames of the movie. (C) The same particular frame is
superimposed with all the trajectories for the whole movie tracked, overlaid and labeled in different colors. (D) For each trajectory, segments from the intensity centroid of the
image to the tracked filopodia tips are drawn. All the trajectories are analyzed and numerical labels are automatically added for identification. (E) Manually selecting origin
locations in one frame for chosen filopodia, the whole movie was reanalyzed and a more accurate estimation of the absolute length was obtained. (F) The closest skeleton
pixels to the same origin points selected before are found. Next, the distance from the filopodia end to these pixels is calculated along the skeleton. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of the article.)
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in each frame are shown when proceeding manually (green diamonds), the distance calculated from the growth cone centroid (blue triangles), length from manually chosen
locations (black squares) and the measure along the filopodia (red circles). (B) The lengths obtained with the algorithms are plotted as a function of the ones manually
measured and linear regressions are calculated. (C) The velocity of the filopodia was calculated and plotted for the different methods after smoothing the traces in A. (D)
Linear regressions are also performed to compare the velocity values obtained with the algorithm. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of the article.)

methods: centroid determination (yellow bars, Fig. 3D), manu-
ally selected origins (yellow bars, Fig. 3E) and distance along the
skeleton (white lines Fig. 3F). Panels 3D-F illustrate length mea-
surements from the 77th frame of the movie.

The absolute lengths obtained using the different methods
(Fig. 4A) and the extension and retraction rates calculated from
these measurements (Fig. 4C) are compared to the numbers
obtained from the manual tracings, providing strong confirmation
that our software provides filopodial dynamic data which is as accu-
rate as manual tracing. Differences in the absolute length values
can be noticed in Fig. 4A because of the rules used to define the
filopodial initiation point and need to be taken into account if abso-
lute values of filopodial lengths are of interest. The same arbitrary
locations chosen for filopodia are used for the Follow and Arbitrary
methods, in Manual tracings the origin and endpoint are relocal-
ized in all frames and in Centroid there is a unique origin for all the
filopodia in every frame rendering always longer lengths. When
there is a global shift of the growth cone, a systematic difference
between the methods that use fixed stationary coordinates and the
ones that update them in every frame will arise.

The correlation between the length obtained using each method
and the length determined by manual tracing was calculated by
performing two-dimensional linear regressions. For the five filopo-
dia that were manually tracked, we plotted the length obtained
with the different algorithms as a function of the value measured
manually for all the frames in the movie. A linear regression was
performed for all of the manually traced filopodia and the mean
slopes obtained with each method are shown in Table 1 where

standard deviation values are shown as absolute errors. The accu-
racy of the method can be demonstrated by comparing the values
obtained manually and using the algorithms. The linear regression
of the computed lengths and velocities as a function of the values
obtained manually should yield a slope of 1 and a minimal disper-
sion around a straight line. The magnitude of the slope reflects the
accuracy of the method, while the error of the linear fit reflects the
precision. In addition, we calculated the probability p-values for
testing the hypothesis of no correlation. Each p-value is the prob-
ability of having a correlation as large as the observed value by
random chance, when the true correlation is zero, yielding always
less than 5%. An example of this correlation is shown in Fig. 4B for
the trajectory obtained for filopodia number 10 (Fig. 3D) and its
dynamics in Fig. 4D.

The values obtained for the methods that consider filopodia as
straight lines show small, systematic differences compared to man-
ual tracing. The reason for this is that even if both origin and end
point of filopodia coincide, the curved trace will always result in a
longer length. Furthermore, the magnitude of this difference will
increase with the total length of the filopodium.

The results achieved for the length and velocity determined by
following the skeleton show the converse effect. Since the skele-
ton changes in the lamellipodial region, in some frames the closet
pixel to the one manually defined belongs to another filopodia and
this produces jumps between skeleton branches causing overesti-
mations of the length which are reflected in the high correlation
slopes. When this happens, it is necessary to visually identify the
filopodia that produce these artifacts and remove them from the



172 S. Costantino et al. / Journal of Neuroscience Methods 171 (2008) 165-173

analysis. The results taking into account only four filopodia instead
of five are shown in parentheses (Table 1).

To our knowledge the method presented here is the first method
described to quantify filopodial dynamics from time-lapse-imaging
sequences thus the results of our routine can only be compared to
results achieved with manual tracings in individual frames. Other
neurite-tracing algorithms lack the sensitivity or automation of this
routine. This filopodial-tracing routine allows for an automated
or semi-automated selection of a single filopodium in the first
frame of a time-lapse image sequence and subsequent automated
tracking of a filopodium through a stack of time-lapse images.
Freely available software such as the Neuron] plug-in for Image]
requires manual selection of initiation and end points for individual
neurites and would thus require time-consuming analysis of each
filopodium in individual frames of the time-lapse movie. More
automated neurite-tracing routines such as NeuriteTracer (Pool
et al., doi:10.1016/j.jneumeth.2007.08.029) rely on a thresholding
paradigm that would fail to distinguish individual filopodia. Skele-
tonizing a growth cone image using this type of neurite-tracing
program would result in a single continuous branched structure
including the neurite stalk and all filopodial protrusions with the
growth cone reduced to a single pixel. Short filopodia would be
lost as they would not be distinguished from the growth cone
and individual filopodia would not be distinguished. The irregular
shapes of growth cones (compared to relatively round cell bodies)
would likely result in false positive filopodial traces. Commer-
cially available neurite-tracing programs such as MetaXpress
(http://www.moleculardevices.com/pages/software/metaxpress.
html) would suffer from the same issues as NeuriteTracer. The
technique we present combines a simple approach for tracing
individual filopodia, with a solution to find and match filopodial
tips in subsequent images, providing a useful tool to quantify this
dynamic process.

5. Conclusions

The method we introduce provides a tool to quantify and auto-
mate the analysis of filopodial dynamics. We have shown that
the algorithm is accurate and opens the door to perform a collec-
tion of quantitative measurements including length and protrusion
and retraction rates. Furthermore, the automation provided by this
method yields a major improvement in the number of filopodia that
can be measured compared with manual tracing, providing sta-
tistically relevant results. We have demonstrated that the original
concept of tracking filopodial end tips as individual single particles
allows the quantification of complex dynamic behaviors without
the need for further development of temporally based neurite-
tracing algorithms.

The formation, extension and retraction of actin-based filopo-
dial structures represent important dynamic processes that
regulate cell motility in a wide variety of contexts. The develop-
ment of this tool will not only be of benefit to the study of filopodial
dynamics in neuronal growth cones but also could be applied to
quantifying the behavior of similar structures in various motile cell
types which underlie critical physiological processes.

The Matlab implementation of our routine is publicly offered
as open-source code in the form of individual functions and also
with a graphical user interface together with a test data set
(http://fournierlab.mcgill.ca). A compiled version is also available
by request.
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