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ABSTRACT We present an extensive investigation of the accuracy and precision of temporal image correlation spectroscopy
(TICS). Using simulations of laser scanning microscopy image time series, we investigate the effect of spatiotemporal sampling,
particle density, noise, sampling frequency, and photobleaching of fluorophores on the recovery of transport coefficients and
number densities by TICS. We show that the recovery of transport coefficients is usually limited by spatial sampling, while the
measurement of accurate number densities is restricted by background noise in an image series. We also demonstrate that
photobleaching of the fluorophore causes a consistent overestimation of diffusion coefficients and flow rates, and a severe
underestimation of number densities. We derive a bleaching correction equation that removes both of these biases when used
to fit temporal autocorrelation functions, without increasing the number of fit parameters. Finally, we image the basal membrane
of a CHO cell with EGFP/a-actinin, using two-photon microscopy, and analyze a subregion of this series using TICS and apply
the bleaching correction. We show that the photobleaching correction can be determined simply by using the average image
intensities from the time series, and we use the simulations to provide good estimates of the accuracy and precision of the
number density and transport coefficients measured with TICS.

INTRODUCTION

Fluorescence correlation spectroscopy (FCS) was originally

conceived over 30 years ago (1) to study the reversible bind-

ing of ethidium bromide to DNA molecules in solution. Since

then, it has emerged as a powerful technique to measure

translational diffusion (2), rotational diffusion (3), triplet state

kinetics (4), and number densities and dynamics of fluo-

rescent proteins inside living cells (5,6). Scanning FCS (7)

and ICS (8) were later developed to study slow moving or

immobile fluorescent membrane proteins at timescales in-

accessible via traditional FCS.

Membrane dynamics can also be probed using other tech-

niques such as single-particle tracking (9) and fluorescence

recovery after photobleaching (FRAP) (10). Single-particle

tracking measures the trajectories of individual labeled par-

ticles, enabling the complete characterization of a range of

macromolecular dynamics in the cell. However, it requires

the particles be individually resolvable, and hence labeled at

a low density, a requirement frequently not met for trans-

fected cells expressing GFP/protein constructs. FRAP has

also proven to be useful in the study of membrane dynamics.

Although fluctuation correlation techniques observe systems

at thermodynamic equilibrium, FRAP introduces a large ex-

ternal photobleaching perturbation and monitors the system

relaxation back to equilibrium. FRAP can measure the dif-

fusion coefficients and mobile fractions of membrane proteins,

but it cannot determine number densities and aggregation

states in contrast to fluorescence fluctuation techniques.

Temporal image correlation spectroscopy (TICS), the imag-

ing analog of FCS, has been used to measure dynamics,

number densities, and aggregation states of proteins in the

membranes of living cells (11–13). Although it was intro-

duced several years ago, there has not been a systematic

investigation of the accuracy and precision of TICS mea-

surements. Previously, the precision of TICS measurements

on cells has only been examined by calculating a cell pop-

ulation average, which reflected the biological distribution

and not instrumental uncertainty (14) along with preliminary

investigations into temporal sampling (15). The main pur-

pose of this work is to fully characterize the accuracy and

precision of TICS measurements.

A large body of work has characterized the accuracy and

standard deviation of FCS measurements (16–21). These

studies have mapped out the complex phase space of ex-

perimental FCS parameters, which dictate the precision of

such measurements. In the past, only a preliminary exam-

ination of the accuracy of temporal ICS measurements had

been performed (15). Furthermore, it is known that the

temporal autocorrelation function (TACF) calculated from

a short finite data set can be a biased estimator of the true

TACF in both FCS and light scattering experiments (17,

22–24). In this work, we investigate if this bias is significant

in typical TICS collection regimes.

It is evident that most cell types exhibit spatial hetero-

geneity in both transport properties and the distribution of

membrane receptors within individual cells (25). For ex-

ample, single CHO cells have recently been shown to have

regions that vary in their diffusion and flow rates of a5-

integrin and a-actinin (11). Since sampling of regions within

a single cell prohibits calculation of a population average,

the significance of a single TICS measurement can only be

judged if its corresponding accuracy and precision is known.
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This work examines several important, and previously

unaddressed areas of TICS measurements: the effect of

spatiotemporal sampling and particle density on the pre-

cision of measured diffusion coefficients, and an examina-

tion of the effects of photobleaching of fluorophores. In all

previous TICS studies, organic fluorophores or fluorescent

proteins were used. During imaging, a fraction of the fluo-

rophores irreversibly photobleach. In these past studies, the

contributions to the TACF of the fluctuations due to photo-

bleaching were neglected. In this work, we show how photo-

bleaching systematically perturbs TACFs, and introduce a

correction factor that corrects for bleaching.We also examine

the effect of background and counting noise on the recovery

of transport coefficients and number densities from temporal

correlation decays.

We demonstrate the application of TICS simulations to

determine the precision of experimental TICS analysis of

a two-photon LSM image time series of a single CHO cell

expressing EGFP/a-actinin. By comparing the sampling and

noise characteristics of the subregion imaged in this mea-

surement with the results of our simulations, we estimate the

accuracy and precision of the TICS measured number

density and diffusion coefficient. Finally, we show that a

photobleaching correction can successfully be applied to this

live cell measurement. The material we present will allow

researchers with little expertise in the field to estimate the

accuracy and precision of single TICS measurements, and to

correct for the effects of omnipresent fluorescence photo-

bleaching.

THEORY

Temporal image correlation spectroscopy has been described

in detail elsewhere (15). We review here the basic formulas

needed to understand this work. We define a spatiotemporal

intensity fluctuation (di(x,y,t)) as the difference between the

fluorescence intensity at pixel location (x,y) in the image

sampled at time t (i(x,y,t)) and the mean image intensity

diðx; y; tÞ ¼ iðx; y; tÞ � Æiðx; y; tÞæt; (1)

where the angular brackets indicate a spatial average over the

image.

Spatial image correlation spectroscopy

The normalized two-dimensional intensity fluctuation spatial

autocorrelation function (SACF) of the image recorded at

time t in a time series is given by

rðj;hÞt ¼
Ædiðx; y; tÞdiðx1 j; y1h; tÞæ

Æiðx; y; tÞæ2t
; (2)

where the angular brackets denote spatial averaging over the

image, and j and h are spatial lag variables. These functions

are typically calculated using Fourier methods (8), and fit to

a two-dimensional Gaussian using a three-parameter non-

linear least-squares algorithm (fit parameters are in bold):

rðj;hÞ
n
¼ gð0; 0Þ

n
exp �j

2
1h

2

v
2

o

� �
1 gNn: (3)

Although number densities can be extracted from the ampli-

tude of the SACF (8,26), the SACFs are only used here to

obtain an estimate of the e�2 beam radius (vo) at the laser

focus (15).

Temporal image correlation spectroscopy

The normalized-intensity fluctuation temporal autocorrela-

tion function (TACF) of an image series as a function of time

lag t is defined as

rð0; 0; tÞ ¼ Ædiðx; y; tÞdiðx; y; t1 tÞæ
Æiðx; y; tÞætÆiðx; y; t1 tÞæt1t

; (4)

where the angular brackets denote spatial and temporal

averaging.

The image series is discrete in both space and time, so a

discrete approximation of the TACF is calculated as

rð0; 0; tÞ ¼ 1

XY
+
X

x¼1

+
Y

y¼1

diðx; y; tÞdiðx; y; t1 tÞ
Æiðx; y; tÞætÆiðx; y; t1 tÞæt1t

; (5)

where X and Y are the number of pixels spanning the region

being analyzed. The discrete TACF calculated by Eq. 5 is

then fit with the functional decay model derived for the mode

of transport present in the sample.

For samples with two-dimensional diffusion, the TACF

has the functional form (27) of

rð0; 0; tÞ ¼ gð0; 0; 0Þ 11
t

td

� ��1

1 gN; (6)

where the characteristic diffusion time, td, is related to the

diffusion coefficient, D, by

D ¼ Æv0æ
2

4td
: (7)

The mean fit e�2 radius (Æv0æ) for a particular analysis is

determined by fitting the SACF of each image to Eq. 3 and

finding the average value of v0 from the time series (28).

The correlation decay model of a sample with two-

dimensional flow is (29)

rð0; 0; tÞ ¼ gð0; 0; 0Þexp � t

tf

� �2
" #

1 gN; (8)

where the characteristic flow time, tf, is used to calculate the

flow speed, jnj,

jvj ¼ Æv0æ
tf

: (9)

The percentage of the population that is immobile can be

calculated from the offset parameter gN in Eq. 6 or 8 (11) as
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% immobile ¼ gN

gN 1 gð0; 0; 0Þ: (10)

Finally, assuming the laser excitation volume has a three-

dimensional Gaussian intensity profile, the functional form of

the TACF for a systemwith three-dimensional diffusion is (30)

rð0; 0; tÞ ¼ gð0; 0; 0Þ

11 t

td

� �
11

Æv0æ
2

z
2

0

t

td

� �1
2

1 gN; (11)

where z0 is the e�2 radius of the laser focus in the axial

direction.

Photobleaching

We now present a derivation for the theoretical form of the

TACF decay in the presence of fluorophore photobleaching.

When a two-dimensional sample is imaged on a LSM and

bleaching occurs, the average intensity of an image in the

series is dependent on time, and the system is no longer

strictly stationary. Nevertheless, we will show in the fol-

lowing section that accurate information can still be obtained

in this case. Under typical LSM imaging conditions, photo-

bleaching of a two-dimensional sample manifests itself as

either a mono- or bi-exponential decay in the average in-

tensity of the image series as a function of time. When a

planar membrane is imaged by LSM, bleached fluorophore

exchange occurs only at the edges. Consequently, if the series

analyzed is a subregion of a larger imaged region, and is not

directly adjacent to the edge of the cell or the edge of the

parent image, there will be a constant bleaching rate without

replenishment by unbleached fluorophores. This behavior is

in stark contrast to FCS measurements in which bleached

fluorophores are constantly replaced by fluorescent particles

from outside the stationary beam spot. For a mono-exponential

bleaching process, the average intensity of an image at time t,
Æi(x,y,t)æt, is given by experiment as

Æiðx; y; tÞæt ¼ Æiðx; y; tÞæ0 exp½�kt�; (12)

where Æi(x,y,t)æ0 is the average intensity of the first image,

and k is the bleaching decay constant with reciprocal time

units. The angular brackets in Eq. 12 indicate spatial averag-

ing over the entire image. For a bi-exponential bleaching

decay, the average intensity is given by

Æiðx; y; tÞæt ¼ A exp½�kt�1B exp½�jt�; (13)

where j is a second bleaching rate, and A and B are amplitude

constants. The bleaching rate in laser scanning imaging is

dependent on a number of experimental parameters, in-

cluding: laser intensity, pixel dwell time, the spectroscopic

and photophysical properties of the fluorophore, and the

oxygen content of the sample. Instead of determining the

individual effect of each of these variables, we empirically

characterize the photobleaching according to Eq. 12 or 13

from the image subregion series data. The information from

these fits is sufficient to correct the TACF for bleaching.

The normalized intensity fluctuation TACF for a system

with one fluorescent component undergoing photobleaching,

rpb(0,0,t), is given by

rpbð0; 0; tÞ ¼
R
dxdy I

2ðx; yÞq2
fpbð0; 0; tÞ

Æiðx; y; tÞætÆiðx; y; tÞæt1t

; (14)

where q is a factor that accounts for the quantum yield and

collection efficiency, I(x,y) is the laser intensity profile, and

fpb(x,y,t) is the concentration fluctuation correlation func-

tion in the presence of photobleaching,

fpbð0; 0; tÞ ¼ ÆdCðx; y; 0ÞdCðx; y; tÞ 1
M

+
M

m¼1

Qmðt1 tÞæx;y;T;

(15)

where the angular brackets denote spatial averaging over

each image, and temporal averaging over the length of the

image series of total time T. The concentration fluctuation,

dC(x,y,t), is defined analogously to the intensity fluctuation

(Eq. 1) as

dCðx; y; tÞ ¼ Cðx; y; tÞ � ÆCðx; y; tÞæt; (16)

where ÆC(x,y,t)æt is the mean concentration in the image at

time t and C(x,y,t) is the concentration at pixel location (x,y)
in the image at time t. The functionQm(t1 t) in Eq. 15 is 1 if

particle m is emitting fluorescence, and 0 if it has bleached at

time t1 t. The sum is over allM particles in the image. This

factor is included only once in Eq. 15 because we consider

bleaching to be irreversible; if a fluorophore is fluorescent

at time t 1 t, then it must have been fluorescent at time t
as well. Furthermore, it is assumed that the bleaching is

independent of any processes that give rise to concentration

fluctuations.

Wewill proceed, without loss of generality, with themono-

exponential case. In this case, the bleaching factor on the right

in Eq. 15 becomes

1

M
+
M

m¼1

Qmðt1 tÞ ¼ exp½�kðt1 tÞ�: (17)

When Eqs. 17 and 12 are substituted in Eq. 14 and the

separability of photobleaching and concentration fluctua-

tions is assumed, we obtain

rpbð0; 0; tÞ ¼
R
dxdy I2ðx; yÞq2 ÆdCðx; y; 0ÞdCðx; y; tÞæTÆexp½�kðt1 tÞ�æT

Æiðx; y; 0Þæ0 exp½�kt�Æiðx; y; 0Þæ0 exp½�kðt1 tÞ� : (18)
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Simplifying, we see the TACF in the presence of photo-

bleaching is a product of the TACF without bleaching, r (t),
and a factor that accounts for the effect of the photo-

bleaching,

rpbð0; 0; tÞ ¼ rðtÞÆexp½kt�æT

¼ rðtÞ 1

T � t

Z T�t

t¼0

dt exp½kt� (19)

¼ rðtÞðexp½kðT � tÞ� � 1Þ
kðT � tÞ ; (20)

where the limits of integration of Eq. 19 were chosen be-

cause the experimental TACF is calculated from an image

series with finite length and total image series time, T.
Analogously, if the bleaching is a bi-exponential process,

Eq. 19 becomes

rpbð0; 0; tÞ ¼ rðtÞ 1

T � t

Z T�t

t¼0

dt
1

A exp½�kt�1B exp½�jt�;

(21)

which can be integrated numerically for a particular set of A-,
B-, k-, and j-values.
We have only presented the theoretical form of the TACF

in the presence of mono- or bi-exponential photobleaching.

However, any arbitrary function (e.g., a high-order poly-

nomial) can be used to fit the intensity decay and an equation

analogous to Eq. 20 or 21 can be derived.

Thus, in the presence of photobleaching, the TACF is a

product of the original theoretical autocorrelation function,

and a correction factor due to photobleaching. Note that

when k/ 0, Eqs. 20 and 21 reduce to r(t), as required. The
constants A and B must be renormalized such that they sum

to one, for the factor to have the correct behavior as k or j
approach zero. To correct for photobleaching, an experi-

mental TACF is fit to a theoretically corrected function, rpb,
which is a product of the uncorrected r(t) decay model (Eq. 6

or 8), and a factor to account for the effect of the bleaching

on the temporal autocorrelation function. This correction

does not add a fitting parameter to the functional form of

the TACF, since all variables in the correction factor are

determined from the decay in average intensity of the image

series. The photobleaching correction is not applicable to

samples with three-dimensional diffusion since fluorophores

are not bleached uniformly, as in a two-dimensional sample

if the imaging is conducted in a single plane as we assume in

this work.

MATERIALS AND METHODS

Computer simulations

All simulations and TACF analyses were written in MatLab R14 (The

MathWorks, Natick, MA), using the Optimization and Image Processing

Toolboxes, and performed on a personal computer (2.4 GHz, 1-GB RAM).

Static images were simulated as previously described (26). Briefly, particle

positions are randomly assigned to a matrix, which is then convolved with

a Gaussian filter, with odd numbered dimensions, to simulate excitation of

point fluorophores in a two-dimensional membrane with a TEM00 beam.

Also, each image series was normalized such that each pixel contained only

integer values, ranging from 0 to 4095, simulating a 12-bit A/D converter of

the PMT current. Particle positions were always stored as floating-point

double-precision numbers, and only rounded before the convolution. For

diffusing particles, each x and y coordinate was changed separately by

adding a random number drawn from a normal distribution with a mean of

zero, and a standard deviation, s, as

s ¼
ffiffiffiffiffiffiffiffiffiffiffi
2DDt

p
; (22)

where D is the diffusion coefficient, and Dt is the sampling time between

sequential images. Circular boundary conditions for both particle movement

and convolution were followed.

The formation of triplet dark states was not included, because this process

occurs on the nanosecond timescale, and is not manifested in typical TICS

imaging modalities where the frame rate is on the order of seconds. We as-

sume that the laser power being used does not cause saturation effects.

Furthermore, we assume that the particles are ideal at the densities and

concentrations simulated in this work.

In three-dimensional diffusion simulations, particles were moved in each

dimension according toEq. 22.The excitation (convolution) profilewas set to be

Gaussian in z,with a z0 e
�2 beam radius of 3v0.Three-dimensional convolutions

are significantly slower than their two-dimensional analogs. So instead of a full

three-dimensional convolution, a Gaussian convolution was only performed at

the z¼ 0 (focal) plane, yielding an image inwhich particles not in the focal plane

were appropriately dimmer than their in-focus counterparts. The size of the z

dimension of the simulation was arbitrarily set at 12z0.
Artifacts were not introduced in the simulations because of a repeating

sequence of random numbers as the built-in MatLab random number

generator has a period of 21492, which far exceeds the 229 random numbers

generated in a single simulation. As well, each set of 100 simulations was

seeded with a different initial state for the generator, thereby ensuring their

independence.

Unless otherwise specified, all simulations were performed with the

following conditions: an e�2 beam radius of four pixels; an image size of 256

3 256 pixels (yielding 1304 beam areas per image); a temporal sampling

interval of four images per td or tf; and a total simulation time of 25 td or tf.

These values correspond to typical laser scanning imaging conditions, and

diffusion and flow times for proteins in the cell membrane (11). Further-

more, these parameters provide adequate spatiotemporal sampling, such that

it gives a reasonable baseline, from which the effect of changing experi-

mental conditions can be examined. Results are given in reduced parameters

instead of dimensional values (e.g., beam areas per image instead of mm2 per

image) to make the results as general as possible.

Photobleaching

To model photobleaching at each time step in the simulations, individual

particles in the image were randomly selected and their yield was perma-

nently changed to zero. For a mono-exponential bleaching process, the

number of particles bleached in image n 1 1, Nbleach
n11 ; was calculated as

N
bleach

n11 ¼ RandPðNn � Nnexp½�kDt�Þ; (23)

where RandP is a built-in MatLab function that returns a random number

from a Poisson distribution with a given mean, Nn is the number of fluo-

rescent particles from the previous image, k is a bleaching rate constant as

defined in Theory (see previous section), and Dt is the time between

successive images. Because no particles photobleach before the image series

is acquired, Nbleach
1 ¼ 0 for all values of k.

To create an image series with bi-exponential bleaching, two populations

with different densities and k values were generated in the same image

series. The densities were chosen to correspond to A and B constants,

whereas the values of k and j were the corresponding decay rate constants,

effectively simulating the decay of the average intensity as given in Eq. 13.
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Background and photon counting noise

As previously described in detail (26), noise in an image series was con-

sidered to be due to both counting and background noise. The method used

to add noise will only be described briefly here. In TICS analysis, an image

series is corrected for background signal, such as scattered light and PMT

dark current, by subtracting the mean intensity of an off-cell region. This

mean correction does not remove the positive fluctuations of the background

noise distribution. To simulate this residual noise distribution, an image

matrix without noise, A, with matrix elements aij, is transformed to an image

matrix with background noise, C, with matrix elements cij,

cij ¼ aij 1suij; (24)

where U is the same size as A and C, and is composed of the absolute value

of normally distributed numbers with a mean of zero, and standard deviation

of one. This standard deviation was scaled using a coefficient s, giving a

final image C with a given signal/background, S/B:

S=B ¼ MaxðAÞ=s: (25)

The Poissonian nature of photon emission ensures that there is always

variability in the number of photons emitted from the fluorophore. Addi-

tionally, the signal amplification in the PMT electronics broadens the signal

distribution in this analog detection scheme. We approximate this broadened

signal distribution as a Gaussian. To model this behavior, the image matrix

A, was modified to yield an image with noise, C,

cij ¼ aij 1WFaij

ffiffiffiffiffi
uij

p
; (26)

where U is a matrix, the same size of A, and contains normally distributed

random numbers with a mean of zero, and a standard deviation of one. The

parameter WF is the analog detection-distribution width factor. Note that

WF¼ 1 is the best case scenario, in which the noise present inC is solely of a

Poissonian nature. At higherWF, the added noise simulates the amplification

of a signal from a PMT-type detector.

Data analysis

TACFs were fit using a Levenberg-Marquardt nonlinear least-squares

algorithm. The values at equal t were not averaged, and were weighted

equally when fit. Because lower lag times contain more pairs of images, this

fitting scheme weighted the correlation from each pair of images equally,

and therefore gave a higher weight to the lower lags as compared to the

higher lags, which contained fewer images. This fitting scheme both avoids

an arbitrary cutoff in the TACF fit function and improves the precision of the

returned fit parameters. In previous work, experimental TACFs were fit

using a nonlinear least-squares fit, weighting all points in the decay equally,

and points after an arbitrary time lag value were discarded, in an effort to

minimize the effect of the inherent noise associated with long time-lag

values in the ACF. White noise in the signal contributes to the numerator of

Eq. 4 only at lag t ¼ 0; consequently, points at this lag were given no weight

in the fit. The TACF calculated from Eq. 5 was then fit to the corresponding

theoretical functional form for the underlying transport process.

The parameters returned from the fit of the TACFs would be improved if

the points in the decay were weighted by their standard deviation. However,

a theoretical derivation for the standard deviation of image correlation func-

tion time lags has not been undertaken as has been done for FCS (17,18).

Thus, the accuracy and precision of the TICS presented here is a baseline

that can be improved upon in the future.

The quality of a fit is judged using the x-squared statistic, x2,

x
2 ¼ +

i

ðyifit � yidataÞ
2

s
2

i

; (27)

where the sum is over each point in the fit, and s2
i is the variance of the

ith point. It is customary to define a reduced x-squared value, x2
n; which

is independent of the number of degrees of freedom of the fit,

x
2

n
¼ x

2

n � n
; (28)

where n is the number of points in the fit, and n is the number of fit

parameters.

Live cell imaging

CHO K1 cells transfected with EGFP/a-actinin were plated on fibronectin-

coated (5 mg/mL) #1.5 coverslips. Cells were imaged at 37�C using a

Bioptechs FCS2 incubation chamber (Butler, PA) 30 min to 3 h after plating.

Images were collected with a Bio-Rad RTS2000MP two-photon microscope

(Hercules, CA) in inverted configuration. Excitation was provided with

a Mai-Tai pulsed femtosecond Ti:Sapphire laser (Spectra Physics, Mountain

View, CA), tuned to 890 nm, and laser power at the focus was attenuated to

,5 mW using neutral density filters. Fluorescence was collected by a 603

PlanApo oil immersion objective (NA 1.4) through a fully opened pinhole,

using a 560 DCLPXR dichroic and an HQ528/50 emission filter. Individual

cells were viewed with a zoom that gave a resolution 0.118 mm/pixel in both

x and y directions. Time series of 45 images were collected with 5 s between

consecutive scans. Control measurements were performed on nontransfected

cells to test for the presence of autofluorescence. Negligible autofluor-

escence was detected using the collection conditions described above.

Additionally, labeled cells fixed in 4% paraformaldehyde for 20 min at room

temperature were used as controls for drift in the stage position, focus, and

laser power.

RESULTS AND DISCUSSION

Spatiotemporal sampling

The effect of temporal sampling on the precision of TICS

measurements was studied using simulations of laser scann-

ing microscopy image time series, with a variable number

of images, but constant transport dynamics, densities, and

image sizes (Fig. 1 A). Both two- and three-dimensional

diffusion coefficients obtained via TICS are systematically

underestimated (i.e., td is overestimated) when few images

are included in the analysis. Conversely, flow rates are ac-

curately determined even with low temporal sampling. If the

number of images in a series places the analysis in a non-

biased regime, then acquiring additional images results in an

increased precision proportional to the square-root of the

number of images. This trend is verified by the magnitude

of the error bars in Fig. 1 A, and is plotted explicitly for

two-dimensional diffusion simulations, as an inset (slope:

0.7 6 0.3, R2 ¼ 0.89).

In most cases, image subregions, and not the full image,

are analyzed in ICS studies on living cells due to spatial

heterogeneities in molecular distributions across mamma-

lian cells. The e�2 radius beam focal spot size sets the char-

acteristic spatial fluctuation sample size (beam area, BA) for

ICS. A typical adherent CHO cell has an area of;2500 mm2

(11) on its basal membrane, and would therefore have 8800

BAs when observed with a typical LSM. However, TICS

analyses are routinely performed on regions of only 40–700

BAs for the reason stated above. Adequate spatial sampling

must therefore be balanced against efforts to resolve cellular

spatial heterogeneity by reducing the analysis subregion size.
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We, therefore, studied the effect of spatial sampling on the

precision of TICS measurements using simulations of laser

scanning microscopy image time series, with variable image

sizes, but constant transport dynamics, and temporal sampl-

ing (Fig. 1 B). As expected from basic signal/noise theory

(31), the precision (or true value divided by the standard

deviation) of a measurement increases linearly with the square-

root of the number of samples (flow slope: 1.016 0.06, R2¼
0.99; two-dimensional diffusion slope: 0.43 6 0.02,

R2 ¼ 0.94; three-dimensional diffusion slope: 0.55 6 0.02,

R2 ¼ 0.99). Although the precision of TICS measurements

of all three processes examined scale with the square-root

of the number of samples, their proportionality constants

vary. These differences are due to the processes’ unique

relaxation methods. The relative magnitude of the slopes

agrees qualitatively with those predicted by Zwanzig and

Ailawadi (32).

At image areas smaller than those shown in Fig. 1 B, a bias
is introduced as with temporal sampling. However, this regime

was not further investigated because regions of interest

smaller than 20 beam areas are not typically used in TICS

analyses. Furthermore, the low precision associated with such

small areas would render their analysis of limited utility.

In theory, the systems simulated were completely ergodic,

so spatial and temporal sampling should be equivalent, and

a reduction in one can be compensated for by increasing the

other. A typical TICS experiment contains far fewer samples

in time than does an FCS experiment, but, each image is

comprised of many beam areas, effectively creating a parallel

FCS experiment. However, it should be noted that the effect

of reducing temporal sampling is different from decreasing

spatial sampling. In the latter case, the only change is

sampling fewer spatial fluctuations, resulting in a decrease in

precision of the points in the TACF. However, shortening the

time of the experiment introduces a bias in the experimental

TACF since it becomes a biased estimator of the true TACF

when calculated from a short, finite data set (17,24).

Additionally, reducing the number of images in the series

results in a TACF with fewer points included in the fit. In the

extreme limit of sampling only one td using our simulation

parameters, this results in a total of only four images in the

series, and only three different lags in the time decay. This

decrease in temporal sampling not only causes a decrease in

the precision of the results, but also introduces a systematic

bias if only a few images are analyzed (Fig. 1 A). In other

words, even if a large number of short image series are

analyzed, the mean value of recovered transport coefficients

will differ significantly from their true value. This bias is a

result of the combination of the inherent problems associated

with fitting Eq. 6 or 8 to so few points, and the statistical

effect of calculating a correlation function from a small data

set.

Sampling rate

On LSM systems, there is some flexibility regarding the

image acquisition rate. To investigate the effect of the tem-

poral sampling frequency on the ability of TICS to recover

transport coefficients, we generated simulated image series

in which the total time (i.e., the total number of characteristic

fluctuation times sampled) was kept constant, and the fre-

quency of image acquisition was changed (Fig. 2). As long

as there are at least two images sampled per correlation time,

the rate of diffusion or flow can be determined precisely. As

the sampling rate increases past this threshold, the precision

increases due to an increased number of images in the series,

as described in the previous section.

To ensure the trends in Fig. 2 were not artifacts introduced

by changing the number of images in each series, we gen-

erated a second set of simulated image series. In this set of

simulations, the sampling rate and the total time were held

constant, but the characteristic correlation time was changed.

These simulations verified the sampling criterion of at least

two images per correlation time established by Fig. 2 (data

FIGURE 1 (A) A plot of the relative error for

recovered characteristic decay times as a function

of the number of td or tf (characteristic fluctuation

times), as averaged from 100 simulations. The error

bars are mean 6 SD. The simulations contained

a variable number of images, each with an area of

1304 beam areas (BAs), a fixed td or tf of four

frames, and an average density of five particles per

BA. The inset shows that when in a nonbiased

regime, the reciprocal relative standard deviation

grows as the square-root of the number of td in the

series. The relative standard deviation of either

td or tf was calculated as the ratio of the standard

deviation of 100 values to the value set in the

simulation. The error bars are calculated according

to Taylor (36). (B) A plot of the reciprocal of the

relative standard deviation for recovered charac-

teristic decay times as a function of the square-root of the number of BAs sampled per image (characteristic fluctuation areas). Linear regression lines to the data

are shown. The simulations contained 100 images, each with a variable number of BAs per image, a td or tf of four frames, and an average density of five

particles per beam area.
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not shown). Furthermore, the precision did not increase

significantly as the sampling rate was increased above two

images per correlation time. Thus, it is clear that the decrease

in precision at sampling rates slow compared to the char-

acteristic fluctuation time is caused by the sampling rate—

and not the number of fluctuations sampled, or the number of

images in the series. Assuming that at least two images per

correlation time are sampled, then it is the total number of

images in the series, and not the image sampling frequency

relative to td or tf that determines the precision. Over-

sampling these processes does not significantly improve the

precision or the accuracy of the result. This has three im-

portant consequences. First, one need not be overly con-

cerned with determining an optimal sampling frequency

since the criterion is usually easy to meet under typical

experimental conditions for LSM imaging of membrane

proteins. Second, since two observations are required to

adequately sample each correlation time, an upper limit is

created on the dynamics observable given an image sam-

pling frequency. The combination of these two parameters

effectively determines the maximum diffusion or flow rate,

which can be detected by a particular imaging system with

a given correlation area or volume. Practically, this means

that the timescales accessible via traditional TICS are much

slower than those previously probed using FCS. However,

recently the image raster scan mechanism on a LSM has been

exploited to obtain fast dynamics (33), bridging the gap in

timescales between FCS and TICS. Third, for a given image

size, the precision of a given measurement is ultimately

determined by the temporal sampling. The number of images

in the series is, in turn, determined by the photobleaching

of the sample, or the time in which the system remains

stationary.

Density effects

The precision of a measurement in fluctuation spectroscopy

is determined by two opposing effects. On one hand, the

magnitude of each intensity fluctuation (Eq. 1) should be

maximized by using a small correlation volume and a low

fluorophore concentration. On the other, the number of

fluctuations sampled should be high, commensurate with a

high density. This balance is exemplified by the effect of

density on the precision of measured td-values, for both two-

and three-dimensional diffusion (Fig. 3). At lower densities,

too few particles are sampled, resulting in a decrease in the

precision of the results. At higher densities, the relative

fluctuations decrease due to the larger number of particles in

the focal area/volume. These opposing effects are balanced

in the density/concentration range of 0.5–5 particles per

beam volume, giving the optimum concentration for TICS

diffusion studies. The density in a cellular system is usually

not an experimentally controlled parameter; however, it is

clear that TICS can still reveal meaningful dynamics over

five orders of magnitude of concentration. The precision of

measured flow rates is independent of the density of the

sample due to the deterministic mechanics of directed flow

(Fig. 3). In all three transport regimes, there was no sig-

nificant bias at any density level. At very high densities and

concentrations, nonideality would become significant, as

described by Abney et al. (34).

Recovery of immobile population

A population of membrane proteins frequently has an immo-

bile fraction, usually attributed to crowding interactions or

FIGURE 3 A plot of the relative standard deviation for recovered

characteristic decay times as a function of the number of particles per BA

(two-dimensional simulations) or effective beam volume (three-dimensional

simulations). The relative standard deviation of either td or tf was calculated

as the ratio of the standard deviation of 100 simulation results to the true (set)

value. The error bars are calculated according to Taylor (36). The simu-

lations contained 100 images, each with an area of 1304 BAs, and a fixed

td or tf of four frames.

FIGURE 2 A plot of the relative standard deviation for recovered

characteristic decay times as a function of the sampling frequency. The

relative standard deviation of either td or tf was calculated as the ratio of the

standard deviation of 100 simulation results to the true (set) value. The error

bars are calculated according to Taylor (36). The simulations contained

a variable number of total images in the series, each with an area of 1304

BAs, a density of five particles per BA, and a fixed td or tf of four frames.
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binding with cytoskeletal or scaffolding proteins (25). In

contrast to FCS, the long correlation time offset in the TACF

of ICS is sensitive to the presence of immobile proteins (11).

In cases of a low immobile fraction (,10%), it is difficult

to extract a precise value for the immobile population from

the TACF with this sampling (Fig. 4). However, as the

immobile fraction increases, it can be measured with great

precision.

Photobleaching

To investigate the effect of photobleaching in TICS analysis,

we ran a series of simulations in which we varied the rates of a

mono-exponential bleaching process. We found photo-

bleaching perturbs a TACF in two distinct ways (Fig. 5).

First, it increases the amplitude of the TACF, yielding number

densities that are significantly lower than the true particle

density, as is expected. Second, photobleaching causes the

TACF to decrease more quickly than in the absence of pho-

tobleaching, resulting in a systematic underestimation of

either td or tf. For the diffusion simulations shown in Fig. 5

with a set td of 4.0 frames, the recovered td values were 4.1,

4.0, 3.8, and 3.4 for the increasing bleach rates. This effect is

caused by intensity fluctuation correlations disappearing

faster than they would if only transport were present.

The severity of these two systematic effects differs sig-

nificantly. The transport coefficients, td or tf, exhibit an in-

creasing negative bias as k increases (Fig. 6 A). However,
this bias never surpasses 10% for flow studies, and is

approximately the same value for diffusion if the bleaching is

only moderate (k # 0.025 images�1). However, if the

fluorophore is susceptible to bleaching, the recovered value

of td can be up to 40% lower than the true value. This bias

was undetected in the previous preliminary study on the

accuracy of TICS (15), because microspheres that exhibit

minimal photobleaching were used. The recovered td values

are more sensitive to photobleaching than the tf-values

because, if Eqs. 6 and 8 are each multiplied by a constant

value, the characteristic decay constant of the former will be

affected to a greater degree when extracted algebraically.

As shown in Fig. 6 B, the relative error in the number

densities as determined from the amplitude of the TACF has

a significant bias even at relatively low bleaching rates. For

example, when k ¼ 0.02 images�1 (corresponding to a

decrease in average intensity of ;30% after 20 images), the

number density obtained from the amplitude of the TACF is

more than three times lower than the true density. This

perturbation is so severe that it had previously prevented the

determination of number densities via TICS.

FIGURE 5 Representative plot of (A)

mean intensity and (B) TACF amplitude

as a function of time or time lag for

photobleaching simulations. Simulations

were generated in which the bleaching

followed Eq. 12 with five different

values of k (images�1). The average

image intensity decays exponentially

as a function of image number. Photo-

bleaching increases both the amplitude

and the rate of decay of the correlation

function for each simulation (B). The

image time-series simulations were of

two-dimensional diffusion; contained

100 images, each with an area of 326

BAs; a td of four frames; an average

density of 2.5 particles per beam area;

and a counting noise WF of 5.

FIGURE 4 A plot of the relative standard deviation for recovered

percentage of immobile particles as a function of the set percentage of

immobile particles. The relative standard deviation of the percent immobile

was calculated as the ratio of the standard deviation of 100 simulation results

to the true (set) value. The error bars are calculated according to Taylor (36).

The simulations contained 100 images, each with an image area of 1304

beam areas, and a fixed td or tf of four frames. The total number of particles

was kept constant at five per beam area on average, and the ratio of the

number of immobile to mobile particles was varied.
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To correct for photobleaching, Eq. 20 was used to fit the

TACFs. The value of k was determined beforehand for each

image series analyzed by fitting the average image intensity

over time to a single exponential decay. Thus, all variables

in the photobleaching correction term are held fixed during the

fit, and the number of fitting parameters is the same as without

the correction. Furthermore, we do not require any prior

knowledge concerning the bleaching rate of the fluorophores

as all relevant information is obtained from the image series

itself. Also, the decay in average intensity can be fit with any

appropriate function, as described in Theory, above.

The correction derived in Photobleaching, Theory, above,

completely removes the bias associated with photobleaching

for both transport coefficients (Fig. 6 C) and number den-

sities (Fig. 6 D). Furthermore, the correction does not

adversely affect the results obtained from simulations with

zero or nearly negligible bleaching. It should thus be applied

to those TICS analyses in which bleaching is present, and

would be adequately modeled by Eq. 12 or Eq. 13.

In measurements on a commercial CLSM with standard

excitation with the 488-nm line of an Ar1 laser, we have

found EGFP has a k-value of;0.02–0.03 images�1 (data not

shown), depending on the imaging conditions, and therefore

exhibits minimal bleaching effects. However, fluorophores

such as CFP and DsRed are much more susceptible to

photobleaching (35), and will therefore exhibit a higher k,
resulting in a non-negligible perturbation of a TICS mea-

surement. We want to emphasize that, even under cases of

high bleaching rates, TACFs can appear to be fit well with

a functional decay model that does not include bleaching

terms (e.g., Eqs. 6 and 8) but with hidden systematic errors.

These systematic errors can be avoided by applying our cor-

rection procedure.

Additionally, the photobleaching correction can be ex-

tended to temporal cross correlation measurements (11), in

which fluorophores bleach at different rates.

We should note that no correction is needed if the full

spatiotemporal autocorrelation function is calculated to de-

termine the direction of concerted protein fluxes in cells

(STICS (12)). In this case, the center of a Gaussian is tracked,

and its position will be independent of photobleaching.

Noise

As previously described in detail for spatial ICS (26), we

divide the noise contributions in TICSmeasurements into two

FIGURE 6 The mean relative error in

the TICS measured (A) characteristic

decay constants, and (B) number den-

sities, in the presence of photobleaching

without bleaching correction. When the

bleaching correction is used, the decay

constants (C) and number densities (D)

are measured without a bias. Error bars

are mean 6 SD from 100 simulations.

The image series simulations contained

100 images, each with an image area

of 1304 BAs, a td or tf of four frames,

and an average density of five particles

per BA.
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categories. Background noise results from scattered light

or detector dark current, while counting noise is caused by

inherent counting statistics and the signal amplification

electronics. Although both are simultaneously present in

a real image series, this distinction is useful because each can

be simulated and measured separately experimentally. Back-

ground noise is determined using Eq. 25 after subtracting the

mean value of a background (i.e., off-cell) region. The count-

ing noise WF must be determined for a given PMT voltage

using a constant signal source, such as a concentrated dye

solution.

Background noise is ubiquitous and can only be

completely subtracted from the image if the S/N is very

high. Any residual intensity has been shown to perturb the

number densities obtained from spatial ICS (26). This is also

true for TICS. As shown in Fig. 7 A, background noise also

introduces a bias in the recovery of number densities from

TACF decays. Although the mean value of the background

can be subtracted, the positive part of the noise distribution

remains in the image, systematically increasing the average

intensity of the image. Because the noise is uncorrelated

between successive images, it makes no contribution to the

numerator in Eq. 4, except at the lag t ¼ 0, which is given no

weight when fitting. However, it does increase the de-

nominator, resulting in an underestimation of g(0, 0, 0) and
a systematic overestimation in the number of independent

fluorescent entities as shown in Fig. 7 A. If the number of

background counts is known, this bias can be corrected as

suggested by Koppel (16).

Compared to background noise, counting (detector) noise

introduces a relatively small bias in the recovery of number

densities (Fig. 7 B). However, this is encountered only at

high instrumental width factors, i.e., for high PMT voltages

in analog detection. In any case under most experimental

conditions, the noise added by light detection will likely be

dwarfed by the more severe error introduced via background

noise.

Both background noise and counting noise did not

significantly affect the standard deviation or bias in the

recovery of transport coefficients at the experimentally

encountered noise levels investigated (data not shown).

Spatiotemporal sampling is clearly the limiting parameter in

the measurement of dynamics via TICS.

TICS measurements in living cells considering
noise, photobleaching, and sampling

To show that the photobleaching correction presented earlier

can be applied to TICS analyses of living cells, we imaged

EGFP/a-actinin fusion proteins in the basal membrane of

CHO cells. After collecting a time series of 45 images at

0.2 Hz, a subregion of the lower membrane (Fig. 8) was

selected for TICS analysis. Background noise was removed

by subtracting the mean intensity of an off-cell region from

the image series. The average intensity of the region of

interest, after background subtraction, was plotted as

a function of image number (Fig. 9 A), and was fit to an

exponential decay. The noise in the average intensity decay

FIGURE 7 The mean relative error in the

TICS measured number densities, in the

presence of (A) background noise and (B)

counting noise. Error bars are mean 6 SD

from 100 simulations. The image series

simulations contained 100 images, each

with an area of 1304 BAs, a td or tf of four

frames, and an average density of five

particles per BA.

FIGURE 8 Two-photon LSM image of EGFP/a-actinin in a CHO cell

plated on fibronectin. The 94 3 74 pixel2 subregion analyzed is outlined in

white, contained 81 beam areas, and 45 frames at 0.2 Hz.
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is likely due to a combination of the small size of the region

analyzed, and the noise associated with light collection and

detection.

The calculated TACF of the region of interest is shown in

Fig. 9 B. As with the simulations, the data is fit well by the

theoretical model for diffusion without a photobleaching

correction (Eq. 6, dashed line, x2
n ¼ 1:34). As noted earlier,

the good fit does not imply either that photobleaching was

not present or that the values from the fit are not biased

parameters. The td from this fit was 49.2 s, the cluster density

was 6.6 per BA, and no immobile fraction was detected.

When the photobleaching correction was used in the fitting

(Eq. 20, solid line, x2
n ¼ 1:34), the td from the fit was 63.1 s,

the cluster density was 12.4 per BA, and again no immobile

fraction was measured. The trends and relative magnitudes

of overestimated amplitudes and underestimated td values

were compatible with the simulation results. Note that the

number densities reported by fluorescent correlation techni-

ques are not the absolute number of fluorophores in the focal

volume. Rather, TICS measures the mean number of

independent fluorescent entities in the focal volume. It

cannot be determined if these are monomers, dimers, or olig-

omers without additional experiments to determine the bright-

ness of a monomeric unit (8).

Given the simulation data presented in previous sections,

we expect the td value recovered from the decay model with

bleaching correction to be an unbiased estimator of the true

characteristic diffusion time. The spatial sampling, 81 BAs,

ultimately limits the precision of the measurement, which is

within 24% of the true value. The S/B ratio for this analysis

was 30.8, so the number density is likely overestimated by

a factor of 19% because of background noise remaining after

subtracting the mean value of an off-cell region. The

counting noiseWF at the PMT voltage used was insignificant

compared to that from the background noise (unpublished

data from dye solution measurements).

CONCLUSIONS

We examined the effect of spatiotemporal sampling, noise,

and photobleaching on temporal autocorrelation functions

measured by ICS. If a critical sampling threshold of two

images per correlation time is met, then the determination of

dynamics is primarily limited by sampling and the precision

of transport coefficients increases proportionally with the

square-root of spatial sampling, whereas increased temporal

sampling decreases bias present in the experimental TACF.

In contrast, the recovery of number densities by fitting

TACFs was fundamentally limited by residual background

counts in the image. These results will allow researchers to

estimate both the accuracy and precision of a result from

a single TICS measurement. They can also be used to

attribute the variation of a group of measurements to either

the precision of the technique, or the inherent heterogeneity

of the system being studied.

We also examined the effect of photobleaching on TACFs,

and found that it causes an overestimation of transport

coefficients, and a severe underestimation of number densi-

ties. We presented a fitting correction to the TACF, which

satisfactorily corrects this bias, and can be extended to

bleaching described by arbitrary functions. Furthermore,

the correction does not require any prior knowledge of the

photophysics of the fluorophore under consideration as the

parameters relevant to the correction can be extracted di-

rectly from the analyzed image series. We expect the

photobleaching correction to be of great utility for future

TICS studies. Additionally, it will be imperative to use such

a correction for temporal image cross-correlation measure-

ments, in which an accurate determination of an interacting

fraction depends crucially on the amplitudes of the TACF

for each component, as well as the amplitude of the cross-

correlation function.

FIGURE 9 (A) A plot of the average

intensity of each frame from the region

of interest image series (Fig. 8) fit to

a single exponential. The line of best fit

is I/I0 ¼ exp [�0.0050 s�1 t]. The bi-

exponential fit yielded equal decay

constants, equivalent to the mono-

exponential fit (data not shown). (B)

The experimental TACF for the cell

region highlighted in Fig. 8 (�) along

with the line of best fit to Eq. 6 (two-

dimensional diffusion, - - -) and Eq. 20

(two-dimensional diffusion with photo-

bleaching correction, —). The residuals

for each fit are shown below their

respective plots.
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