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Analytical expressions for the throughput of a direct space-to-time encoder are used to determine possible out-

put distortions and limitations.

tortions and optimize the performance of the encoder.
beams in the system produce drastic variations in the coupling coefficient to an optical fiber.

The interplay of relevant design parameters is analyzed to avoid such dis-
It is proved that the different propagation angles of the

It is also shown

that it is possible to solve this problem when the throughput of the system is reduced. © 2001 Optical Society

of America
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1. INTRODUCTION

Progress in optical communications continually demands
faster methods for information transmission. In this
context, Leaird and Weiner! have recently introduced the
so-called direct space-to-time (DST) pulse encoding based
on the picosecond pulse shaper reported in some previous
papers.>3

The system shows similarities to a conventional
Fourier-transform pulse shaper. The method basically
consists in pixelating an input femtosecond pulsed laser
beam so that each pixel can be independently modulated.
Light is then dispersed by a grating followed by a Fourier
filter, consisting of a lens and a slit positioned at the focal
plane. As a result, each pixel beam arrives at the slit
with a time delay proportional to the pixel number, and
hence the spatial information of the array of pulses is lin-
early converted into time information. This last part of
the system is described in Fig. 1.

In this paper we compute an analytical expression for
the electric field of the array of pulses that propagate
from the grating to the slit. Such expression is used to
determine the throughput of the DST as a function of de-
sign parameters. The result shows that power after the
slit goes as Leaird and Weiner! predicted only under cer-
tain particular conditions. Moreover, when the informa-
tion is coupled into an optical fiber, we show that drastic
limitations appear, yielding a rapidly decaying through-
put as the number of pixels increases.

To acquire some physical insight of the system, we
chose five parameters so that their interplay would de-
scribe the behavior of the DST under different conditions.
Two of these relevant magnitudes are pixel size at the
grating (o) and the distance from the mth pixel to the cen-
ter of the array (h,,). The astigmatic parameter, the
wavelength, and the focal length of the lens will define
the third parameter that is the pixel spot size at the slit
plane (R), depicted in Fig. 2. The fourth magnitude is
the spatial dispersion of the input beam spectrum at the
slit plane (S) that is determined by the dispersion of the
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grating, the focal length, and the limited bandwidth of the
laser pulse (Fig. 3). The last parameter is the slit aper-
ture, and these five parameters are enough to describe
the system qualitatively.

The first relevant consideration is that, after the slit
plane, the different pixel beams will propagate in differ-
ent directions; and, to have a superposition, the diffrac-
tion angle that is due to the slit must be bigger than the
propagation angle. This relation imposes the first limi-
tation to the size of the aperture (D) and carries a de-
crease in the throughput. Furthermore, the more pixels
we want, the smaller the aperture must be. On the other
hand, to increase the throughput, D should be bigger that
R so that the spot is not blocked by the slit.

The design of the DST should also consider that, if S
were bigger than the slit aperture, it would give rise to
pulse broadening and throughput loss. Apart from that,
if S were larger than R, then the different frequency com-
ponents of the pulse would not overlap in the slit; but a
smaller bandwidth would imply that the input pulse is
broader than the intended pixel duration.

In this paper we obtain design equations that ad-
equately describe the interplay of these parameters to op-
timize the performance of the system.

2. ANALYTICAL DESCRIPTION

To achieve an analytical solution for the throughput, the
pixels are assumed to have Gaussian profiles. This ap-
proximation is not severe; even if no apodization is used,
high spatial frequencies will typically be lost because of
diffraction and the profile will be smoothed upon propa-
gation. Similar arguments hold for the Gaussian ap-
proximation used for the slit transmission.

For our calculations we follow the formalism presented
in Refs. 4 and 5 and the notation therein that is slightly
different from that used by Leaird and Weiner.! As de-
picted in Fig. 1, the incidence angle is y and the output
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Fig. 1. Schematic of the space-to-time shaper. Five pixels of
width o are represented.
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Fig. 2. Pixel spot size at the grating is o, and it becomes R at
the slit plane. D is the aperture of the slit.
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Fig. 3. Limited bandwidth of the laser pulse Aw, the dispersion
of the grating B, and the focal length of lens f determine the spa-
tial dispersion of the input beam spectrum at the slit plane S.

angle is 6. The wavelength of the central frequency is \.
The astigmatic parameter « and the dispersion B are
given by

cos(y)

a= - , (1
cos( )
7\2

B= ——"T"— (2)

2med cos(6)’

where ¢ is the speed of light and d is the groove spacing.
The input beam amplitude of any pixel of the array
that is reflected on the grating is given by
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where a is the electric field amplitude, o is the central fre-
quency of the pulse, Aw is the bandwidth, 2 = w/c is the
wave number in vacuum, x is the lateral dispersion coor-
dinate, and h,, is the distance from pixel m to the center
of the array. ¢ is defined by

1 n 2
q—: ; _iﬁ’ (4)

where p is the phase front radius of curvature, n is the dif-
fraction index, and o is the spot radius at the beam waist.
We obtain the expression for the pulse at the focal plane
using the matrix formalism presented by Martinez.® As
a result, the amplitude of the electric field is given by the
expression

? Bwh,,
Qoeus(X, ®) = a exp YV exp| —ik

a
k252
X exp| — W(x - fﬁw)z}
sa=
X exp —lkf—a , (5)

where fis the focal distance of the lens, assuming that q is
pure imaginary, which mens that the beam waist is lo-
cated at the grating (z = 0) for the central pixel.

Field amplitude in Eq. (5) has four exponential terms.
The first one shows the pulse’s limited bandwidth. The
second one represents the time delay between the central
pixel and one at a distance 4, , and it provides the space-
to-time scaling constant Bk/«. The third term is related
to the Gaussian spatial profile at the focal plane and
shows that the slit can be slightly moved without altering
the temporal output as stated by Leaird and Weiner®
The last one appears because of the different propagation
angle for each pixel beam.

We achieve the normalized intensity of the beam after
the slit by multiplying Eq. (5) by the slit transmission
function T;;, where D represents the size of the aper-
ture:

xZ
Tai = exp( W) . (6)

The integration of the normalized intensity yields the
DST throughput 7"

f2(26¥2 + k2BQAw20'2) -1/2

T =
2D%k2 52

(7

3. THROUGHPUT ANALYSIS

It is possible to analyze the throughput given in Eq. (7) in
terms of the parameters presented in Section 1. Pixel
spot size at the slit plane R and spatial dispersion of the
input beam spectrum S can be precisely described by
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The result can be expressed as a function of two dimen-
sionless parameters R/D and S/R:

R2 SZ —1/2
1+—2(1+—” : (10)

T =
2D R?

The parameter S/R is related to the ratio of the pixel
time duration and the input pulse width. This can be
seen in relation (11), where the first factor is proportional
to the inverse of the input pulse time duration and the
second one is the space-to-time scaling constant times the
pixel spot size at the grating:

S Bko
— x Aw——. 11)
R |al

Equation (10) is plotted in Fig. 4 as a function of S/R,
with the ratio of the pixel spot size and the slit aperture
(R/D) as a parameter. This shows that only for large
S/R the throughput scales as the ratio of the input pulse
width and the temporal window generated by the array of
pixels (R/S) as quoted in Ref. 1. This is shown in Fig. 4
where the slope of the throughput asymptote is parallel to
R/S.

The asymptotic value of the throughput is D/R and is
of the order of the inverse number of pixels for small S/R,
but S/R < 1 implies that the input pulse duration is
larger than the pixel time duration, which is not a physi-
cally interesting condition. The pixel spot size o can be
small, but the pixel time duration will not be shorter than
the input pulse.

To avoid time pattern distortions, the diffraction angle
corresponding to the slit aperture should be bigger than
the one at which each pixel beam propagates:

— < DE. (12)
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Fig. 4. Throughput of the DST shaper as a function of the ratio
of pixel time duration and input pulse width (S/R). The ratio of
the pixel beam at the slit plane and the aperture (R/D) is an up-
per bound to the number of pixels. For large S/R, the through-
put scales as the ratio of the input pulse width and the temporal
window generated by the array of pixels (R/S).
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This condition yields a restriction on the number of pixels,
replacing the distance from the center of the array to the
mth pixel (h,,) by m éo, where the design parameter ¢ de-
fines the ratio of pixel separation and pixel width:

R

To have a better idea of the throughput characteristics
that can be achieved in realistic conditions, we now
present some numerical examples. The first situation we
consider is similar to the one stated in Ref. 1 where the
authors have a 150-fs pulse from a titanium:sapphire
laser, centered at 850 nm. The incidence angle is
vy = 47° and the diffraction angle 6 = 53°, the grating
has 1800 lines mm, the pixel spot size is 20 um, and they
are separated by 60 um. For a 100-mm focal-length lens
and a 100-um slit, the throughput calculation results in
2%. Another possible setup consists in a 100-fs pulse
centered at 800 nm, with a 1200-line/mm diffraction grat-
ing at normal incidence. The focal length of the lens is
f = 100 mm, the pixel spot size is 50 um and & = 3, the
slit aperture is 100 wm, and the throughput becomes
1.5%.

4. OPTICAL FIBER COUPLING

A different situation is encountered if, instead of a slit,
the beam is coupled into an optical fiber. Here, we pro-
ceed in a similar manner as above to compute the cou-
pling coefficient of the DST to a monomode optical fiber.
We describe the electric field at the focal plane (5) as a lin-
ear combination of the fiber modes and calculate the dif-
ferent coefficients.

In this case the only mode of the fiber was assumed to
have the form’

1

JaD

and we achieved the coupling coefficient a(; using the fol-
lowing procedure stated in Ref. 8:

(2% + y?%)
2D?

Vo1 = exp , (14)

a01:f Woi(x,y)E(x, y)dxdy, (15)

where E(x, y) is normalized to a unit area.

As a result, we obtained a function whose square modu-
lus can be integrated in frequency to achieve the through-
put in this new situation:

m2§2
4R, exp| —2 72
1+ l?
D2 1/2 D2 S2 1/2 R?; ’
1+ }? 1+ I? + 1? 1+ ﬁ R

(16)

where R, is the pixel spot size in the direction perpen-
dicular to the dispersion plane.

Equation (16) is plotted in Fig. 5 as a function of S/R.
R, was chosen to maximize the throughput.
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Fig. 5. Coupling efficiency to a monomode optical fiber of the
DST as a function of the ratio of pixel time duration and input
pulse width (S/R) for the fourth pixel and ¢ = 1.5.

15
= 0.1
3 AN
2
= \\
=4 S/R=1 and £=3
o \ ——m=4
S Voo ] e m=3
0.014 ‘\ - m=2
/- i =
\ T
\ =
1
1]
!
1
H !
Pl !
1x10% T T + e T
0.01 0.1 1 10
D/R

Fig. 6. Coupling coefficient to a monomode optical fiber as a
function of D/R for different pixels and S/R = 1. When we re-

duce D/R, the throughput decreases and the intensities of the
pixels become balanced.

In Fig. 6 the throughput for different pixels is plotted
for a fixed S/R condition as a function of D/R. It be-
comes clear that the throughput for each pixel is different
and that it drastically decreases for pixels that are more
distant from the center of the array. To avoid this power
difference between pixels, the ratio D/R must be properly
designed. For a large number of bits to transmit, the
pixel spot size at the fiber plane should be much larger
than the fiber core, and consequently the throughput will
decrease. This effect is due to the sensitivity of the fiber
coupling efficiency to the angle of incidence. High-order
pixels will come at angles larger than the acceptance
angle of the fiber.

If we consider the first case described in the numerical
examples, when we replace the slit for a 6-um core single-
mode fiber, the coupling coefficient for the tenth pixel be-
comes 0.16%. For the second case (normal incidence),
with the same fiber, the throughput is 0.13%.

It is possible to calculate the design parameter D/R
that satisfies that the ratio of the throughput of the mth
pixel and the central pixel is larger than a fixed constant
exp(—n):
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D2
2m2§2_

n > 17

When we use inequality (17) it is easy to see that, for
D/R < 1, the number of pixels that have similar intensi-
ties is proportional to R/D. So when we require that the
intensities of the pulses do not vary more than 10%, in the
situation described in the first example, it is possible to
send 110 bits through an optical fiber by use of the DST.

Furthermore, assuming the conditions R =~ S and
D/R < 1, we obtain a formula for the throughput that
considers only the number of pixels that we want to send
and the tolerance to power variations.

2\ nexp(—7)
r<-——H——

N ) (18)

where N represents the total number of pixels.

5. CONCLUSIONS

In conclusion, the analytical expression for the through-
put in terms of design parameters allows us to describe
the behavior of the pulse shaper precisely. We have
shown that the different propagation angles of the beams
in the DST produce huge variations in the coupling coef-
ficient to an optical fiber and that this can be solved when
we reduce the size of the aperture, hence decreasing the
throughput. This effect was not evident when we used a
slit, because all the power could go through the slit for
any propagation direction. Therefore we have obtained
useful expressions to calculate the throughput as a func-
tion of the number of pixels and the tolerance to intensity
difference between them.
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